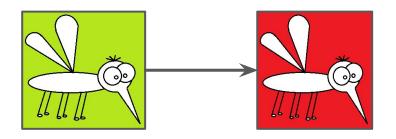
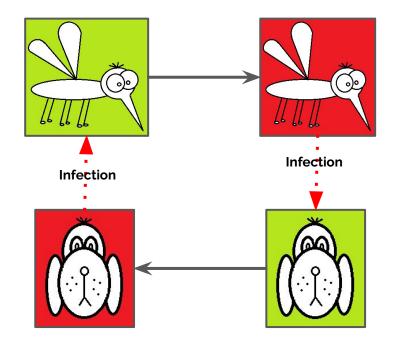
Spatio-temporal modelling of visceral leishmaniasis (VL) among domestic dogs in rural Brazil

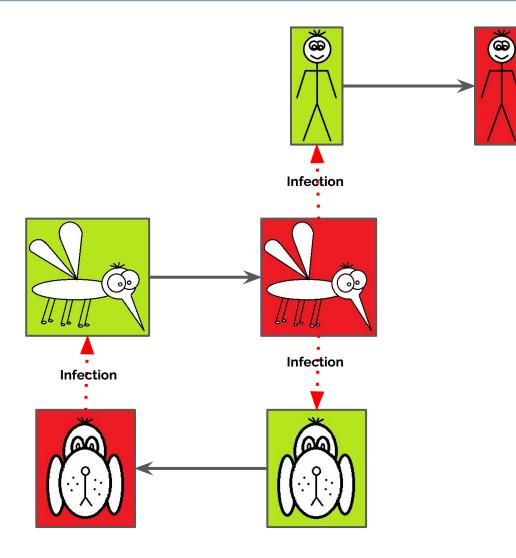
Elizabeth Buckingham-Jeffery¹ () @Ebucksjeff) & Edward Hill² () @EdMHill)


¹ School of Mathematics, The University of Manchester. ² Zeeman Institute: SBIDER, University of Warwick.

MANCHESTER

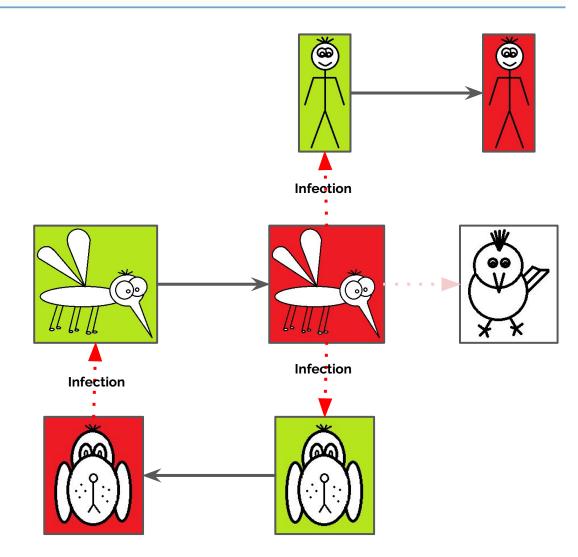


• A vector-borne disease spread by **sandflies**.


- A vector-borne disease spread by **sandflies**.
- In Brazil, **domestic dogs** are the main reservoir.

MANCHESTER

The University of Manchester


- A vector-borne disease spread by **sandflies**.
- In Brazil, **domestic dogs** are the main reservoir.
- Human infection alone cannot maintain transmission.

MANCHESTER

The University of Manchester

- A vector-borne disease spread by **sandflies**.
- In Brazil, **domestic dogs** are the main reservoir.
- Human infection alone cannot maintain transmission.
- Sandflies feed on other dead-end hosts: for example, chickens.

MANCHESTER

The University of Manchester

VL in Brazil

- VL is endemic in parts of Brazil.
- Serological studies have estimated **prevalence in dogs** to range between 25% and 50% in endemic northern regions.
- The number of human cases has increased rapidly in the last 30 years: 3,500 reported cases per year, 4,200 6,300 with underreporting.

Previous VL models

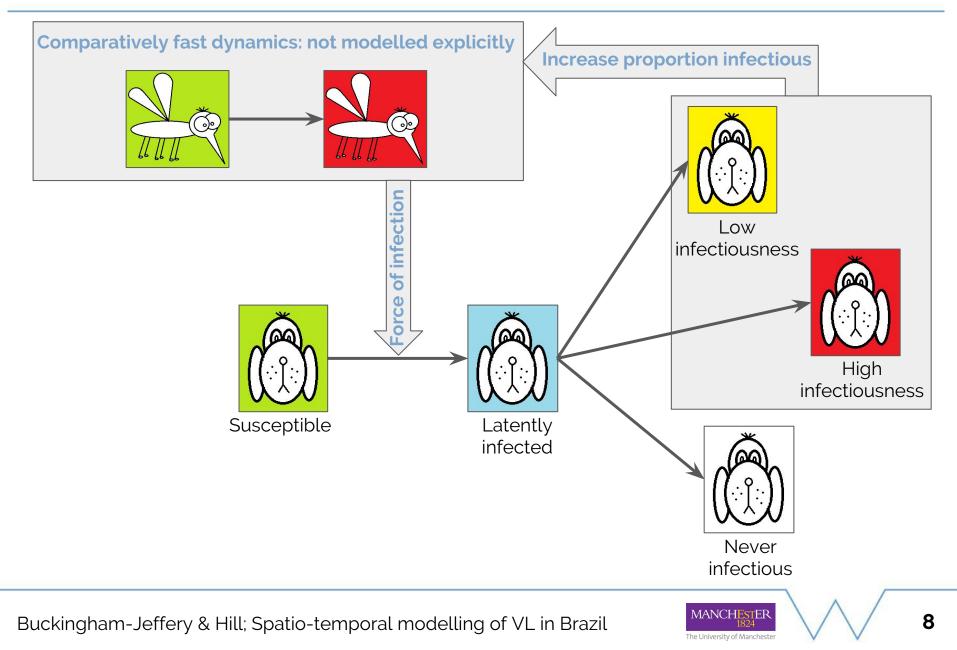
Table 1. Summary of VL modelling papers

	Refs																							
	Anth	roponot	ic studi	dies Zoonotic studies																				
	[16]	[61]	[13]	[62]	[10] ^a	[17]	[12] ^a	[11] ^a	[63]	[57]	[40]	[64]	[65]	[41]	[58]	[66]	[67]	[42]	[28] ^b	[29] ^b	[14]	[15] ^b	[68]	[59]
Model structure																		<i>.</i>						
Deterministic	∠ °		-		-		~	-	-	-		-		1	1	-	-	-	~	-		-		-
Host-only	-	-		-		-			-			-	-	-	-		-							-
Assumption																								
Asymptomatic humans					-	-	-	-																
PKDL					-	-	-	-											-			-		
Humans	-	-	-	-	-	-	-	-				t					†	†	-	-		-		
Asymptomatic dogs										1					1									1
Spatial aspects																					-	-		
Seasonality														\checkmark										
Intervention																								
Human treatment		-	-	-	-	-	-	-											-			-		
Human vaccination						-						-										-		
Vector control					-			-				-												
Dog culling															-	-	-						-	-
Dog collar																-							-	
Dog treatment												-									*			
Dog vaccination												-											-	
Region	India	Sudan	India	ISC	ISC	India	India	ISC	France	-	-	Brazil/ Malta	-	Brazil	Brazil	Brazil	Brazil	Morocco	Sudan	-	France	-	Brazil	Brazil

^aDenotes studies by Stauch et al. that use the same basic model.

^bDenotes studies by ELmojtaba *et al.* that use the same basic model.

^c/, included in model; †, dead-end hosts; *, implicitly included in other terms; -, unclear or unknown region.


Reference: K.S.Rock et al (2015) Uniting mathematics and biology for control of visceral leishmaniasis. *Trends in Parasitology*, **31**(6):251-259..

Buckingham-Jeffery & Hill; Spatio-temporal modelling of VL in Brazil

7

Our spatial modelling framework

 Probability of susceptible dog at household h becoming infected on day t:

$$p_h(t) = 1 - e^{-\lambda_h(t)}$$

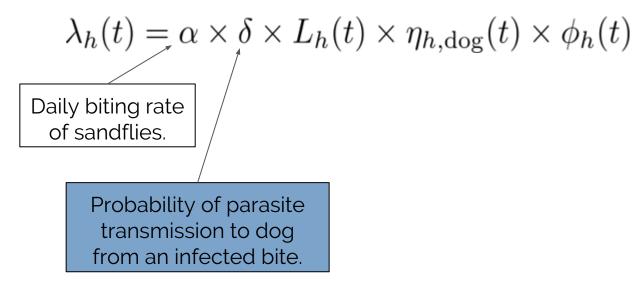
• Force of infection comprised five components:

$$\lambda_h(t) = \alpha \times \delta \times L_h(t) \times \eta_{h,\text{dog}}(t) \times \phi_h(t)$$

 Probability of susceptible dog at household h becoming infected on day t:

$$p_h(t) = 1 - e^{-\lambda_h(t)}$$

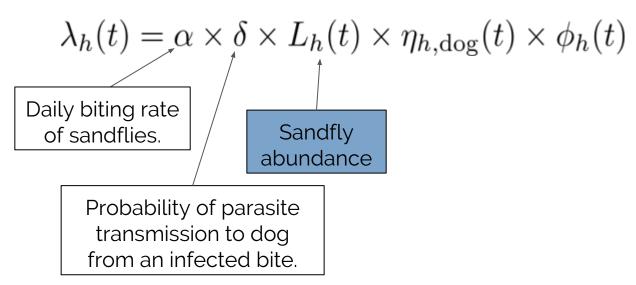
• Force of infection comprised five components:


$$\lambda_h(t) = \alpha \times \delta \times L_h(t) \times \eta_{h, \text{dog}}(t) \times \phi_h(t)$$

Daily biting rate of sandflies.

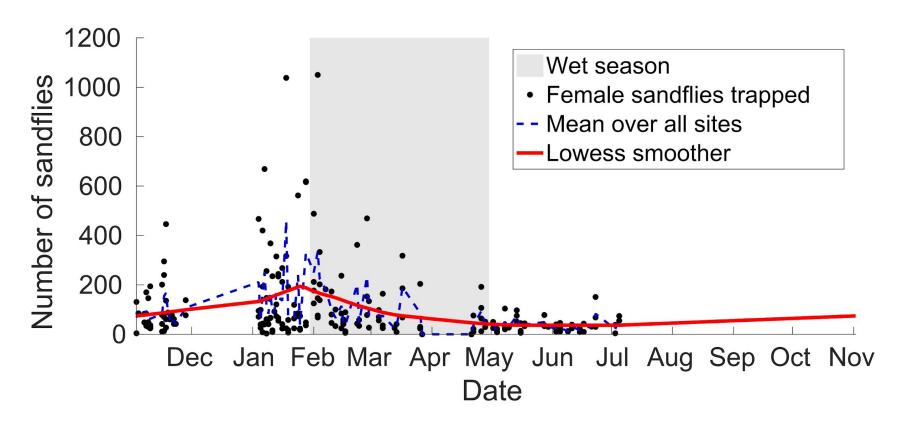
 Probability of susceptible dog at household h becoming infected on day t:

$$p_h(t) = 1 - e^{-\lambda_h(t)}$$


• Force of infection comprised five components:

 Probability of susceptible dog at household h becoming infected on day t:

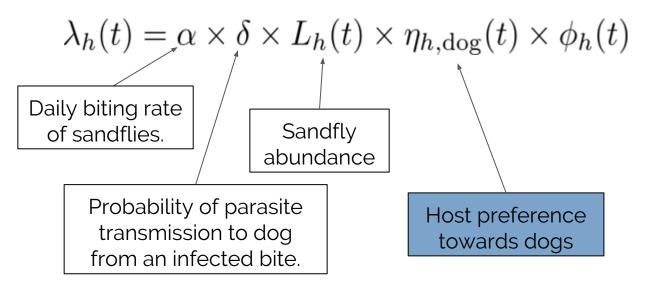
$$p_h(t) = 1 - e^{-\lambda_h(t)}$$


• Force of infection comprised five components:

Buckingham-Jeffery & Hill; Spatio-temporal modelling of VL in Brazil

MANCHESTER

Figure 1: Seasonality of sandfly abundance



- Peak in January, at the transition from the dry to wet season.
- Minimum attained in May-June.

 Probability of susceptible dog at household h becoming infected on day t:

$$p_h(t) = 1 - e^{-\lambda_h(t)}$$

• Force of infection comprised five components:

Buckingham-Jeffery & Hill; Spatio-temporal modelling of VL in Brazil

MANCHESTER

Figure 2: Distributions of the number of hosts per household. Empirical data (bars), best fit Poisson distributions (blue, solid line) and negative binomial distributions (red, dashed line)

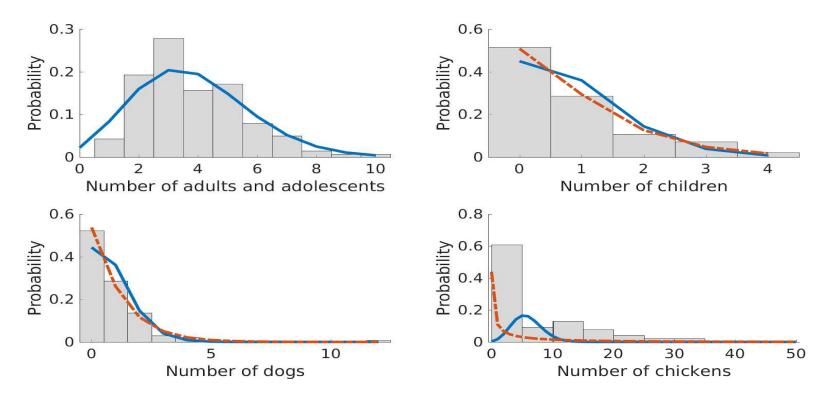
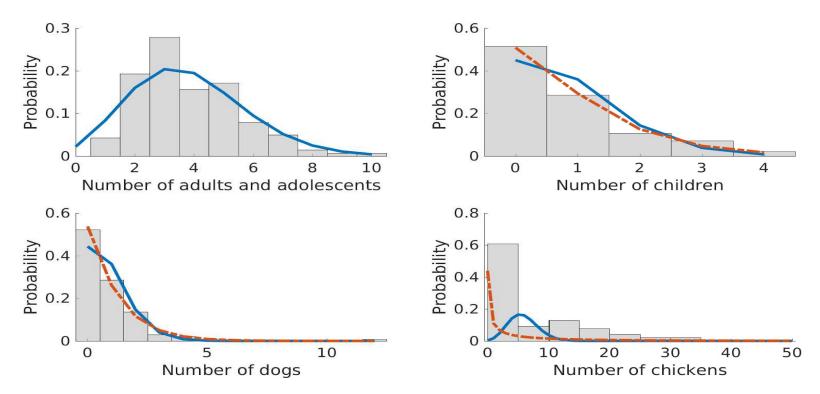
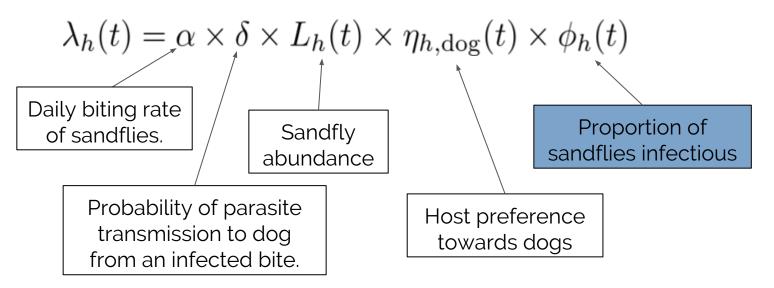



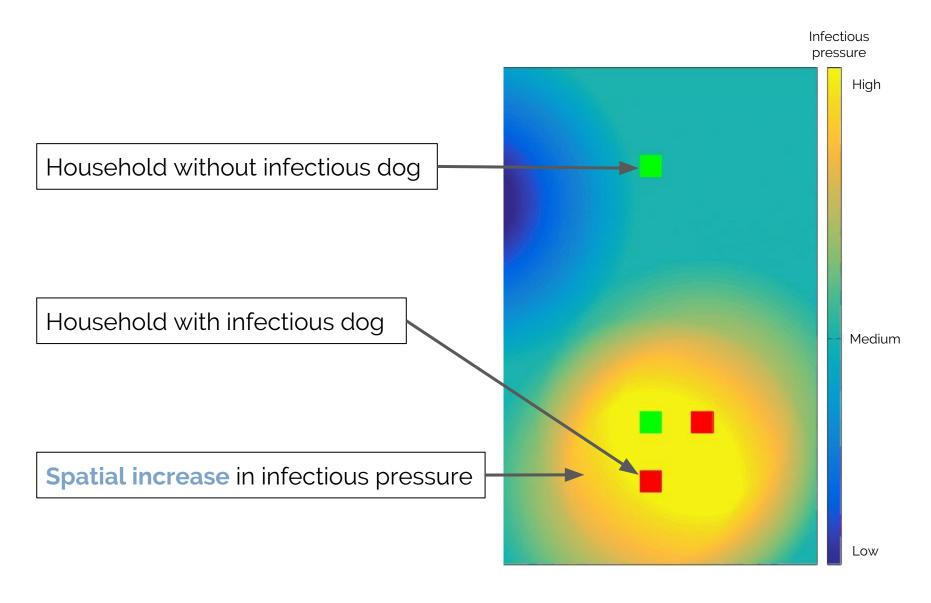
Figure 2: Distributions of the number of hosts per household. Empirical data (bars), best fit Poisson distributions (blue, solid line) and negative binomial distributions (red, dashed line)

• Sandfly biting preference towards host of interest drew on field and laboratory experiments.


Reference: R.J. Quinnel et al (1992) Host preferences of the phlebotomine sandfly Lutzomyia longipalpis in Amazonian Brazil. *Med. Vet. Entomol*, **6**(3):195-200.

 Probability of susceptible dog at household h becoming infected on day t:

$$p_h(t) = 1 - e^{-\lambda_h(t)}$$

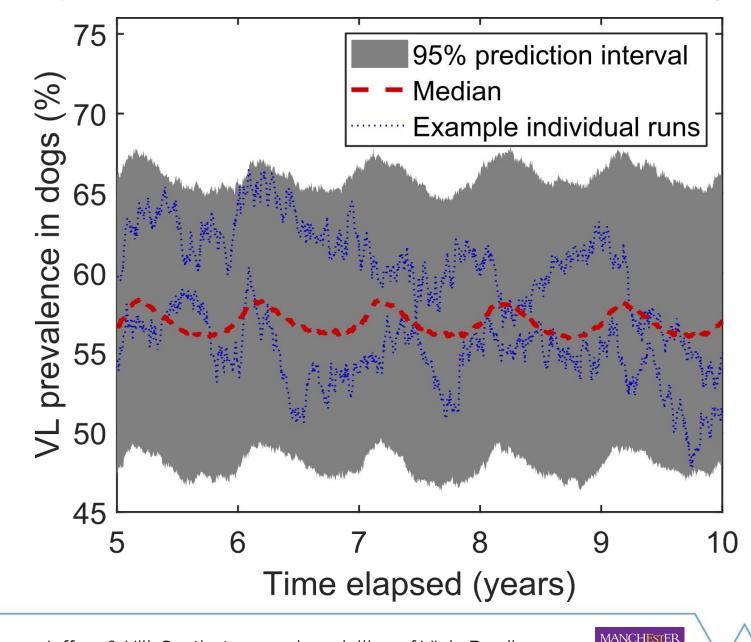

• Force of infection comprised five components:

Buckingham-Jeffery & Hill; Spatio-temporal modelling of VL in Brazil

MANCHESTER

Figure 3: Spatial impact of infectious dogs on force of infection

Model simulations


- Used spatial configuration of households in Calderao village.
- Force of infection used to compute probability of each susceptible dog becoming infected on current day.
- We keep track of the number of infected dogs each day: model output was **prevalence**.
- Outcomes were averaged over 1000 separate model runs.

Households within Calderao

Figure 4: Simulated VL prevalence in domestic dogs

Sensitivity Analysis

Parameter ID	Symbol	Description	Baseline value	Other values tested		
1	r	Interaction range of sandflies (km).	0.30	0.02, 0.7, 2		
2	π_{never}	Proportion of infected dogs that are never infectious.	0.55	0.14, 0.28, 0.42		
3	$\tilde{\pi}_{high}$	Proportion of infectious dogs that are highly infectious.	0.37	0.25, 0.60, 0.80		
4	ξ	Probability of a newly introduced dog being infected.	0.130	0.0064, 0.29, 0.43		
5	ν	Per capita rate of progression of dogs	0.0055	0.0042, 0.0047, 0.0065		
:	:	from latently infected to a further state (Days ⁻¹). $1/\nu$ is the average duration of the latent period (Days).	÷	:		

Buckingham-Jeffery & Hill; Spatio-temporal modelling of VL in Brazil

÷

Sensitivity Analysis

Parameter	Symbol	Description	Baseline	Other values tested		
ID			value			
1	r	Interaction range of sandflies (km).	0.30	0.02, 0.7, 2		
2	π_{never}	Proportion of infected dogs that are never infectious.	0.55	0.14, 0.28, 0.42		
3	$\tilde{\pi}_{high}$	Proportion of infectious dogs that are highly infectious.	0.37	0.25, 0.60, 0.80		
4	ξ	Probability of a newly introduced dog being infected.	0.130	0.0064, 0.29, 0.43		
5	ν	Per capita rate of progression of dogs	0.0055	0.0042, 0.0047, 0.0065		
:	:	from latently infected to a further state (Days ⁻¹). $1/\nu$ is the average duration of the latent period (Days).	÷	:		

Measure: Average prevalence

Average VL prevalence =
$$\frac{\sum_{t=T-364}^{T} \text{VL prevalence}(t)}{365}$$

• Performed a one-at-a-time sensitivity analysis.

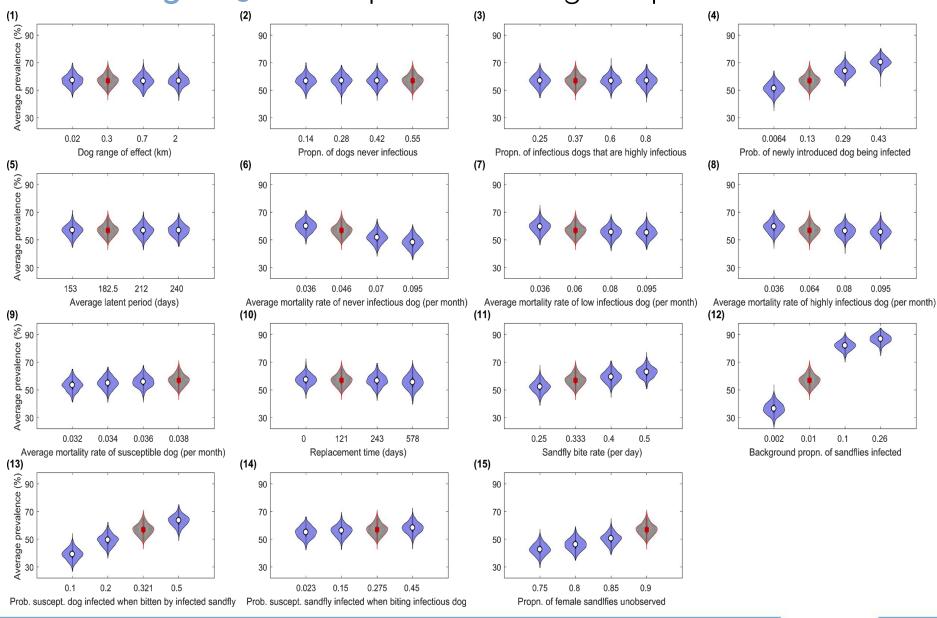
Buckingham-Jeffery & Hill; Spatio-temporal modelling of VL in Brazil

MANCHESTER

Sensitivity Analysis

Parameter ID	Symbol	Description	Baseline value	Other values tested
1	r	Interaction range of sandflies (km).	0.30	0.02, 0.7, 2
2	π_{never}	Proportion of infected dogs that are never infectious.	0.55	0.14, 0.28, 0.42
3	$ ilde{\pi}_{high}$	Proportion of infectious dogs that are highly infectious.	0.37	0.25, 0.60, 0.80
4	ξ	Probability of a newly introduced dog being infected.	0.130	0.0064, 0.29, 0.43
5	ν	Per capita rate of progression of dogs	0.0055	0.0042, 0.0047, 0.0065
:	:	from latently infected to a further state (Days ⁻¹). $1/\nu$ is the average duration of the latent period (Days).	÷	:

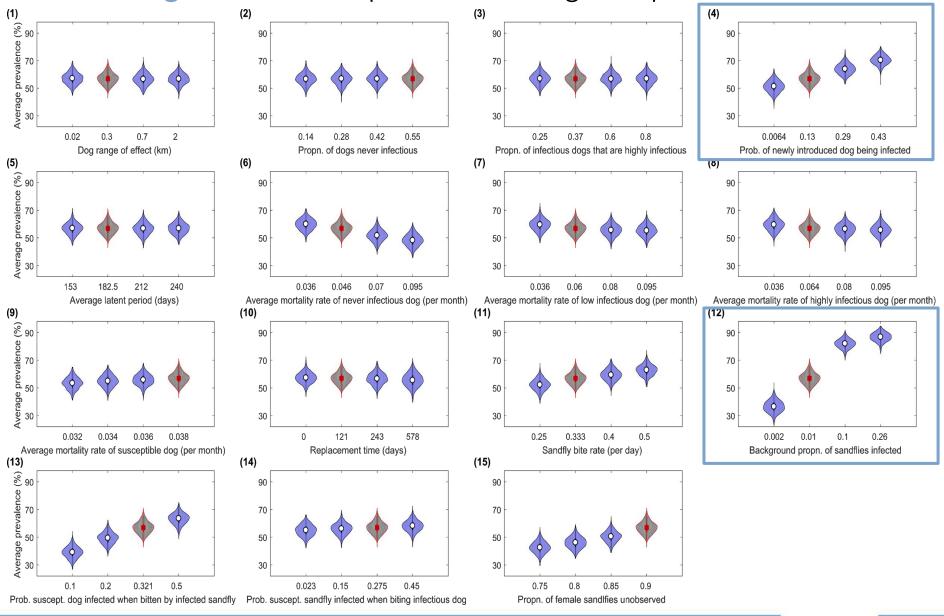
Analysed by:


- violin plots
- computing stochastic sensitivity coefficients

Reference:

Damiani et al (2013) Parameter sensitivity analysis of stochastic models: Application to catalytic reaction networks. *Computational biology and chemistry* **42**: 5-17.

Figure 5A: Violin plots for average VL prevalence



Buckingham-Jeffery & Hill; Spatio-temporal modelling of VL in Brazil

24

MANCHESTER

Figure 5A: Violin plots for average VL prevalence

Buckingham-Jeffery & Hill; Spatio-temporal modelling of VL in Brazil

/ \vee

MANCHESTER

Figure 5B: Violin plots for average VL prevalence.

(Left) Background proportion of infected sandflies

(**Right)** Probability of a newly introduced dog being infected

MANCHESTER

The University of Manchester

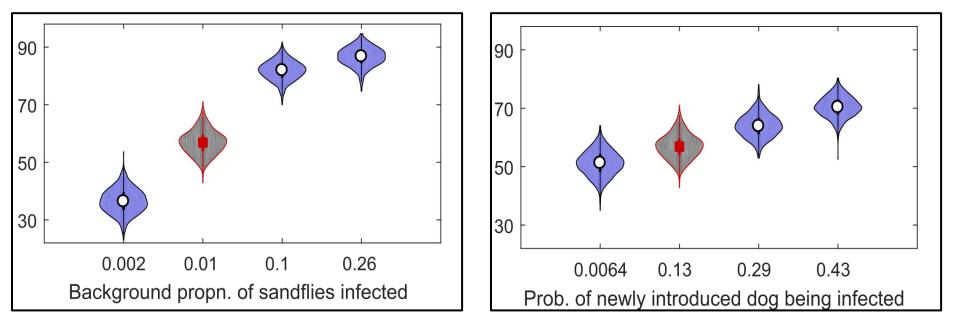
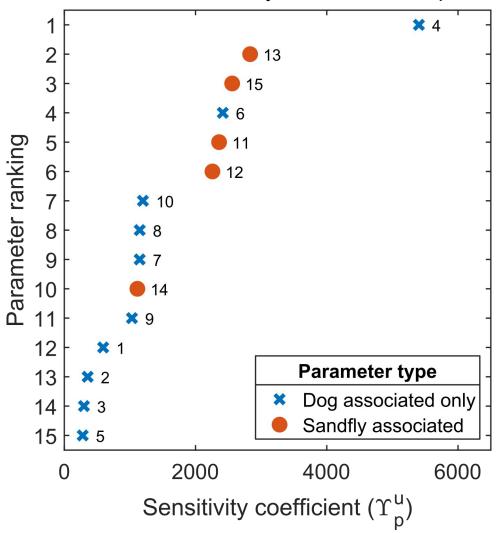
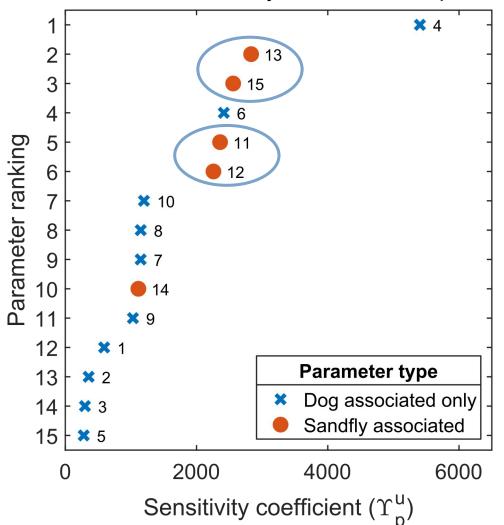



Figure 6: Stochastic sensitivity coefficient parameter ranking

Buckingham-Jeffery & Hill; Spatio-temporal modelling of VL in Brazil

MANCHESTER


Figure 6: Stochastic sensitivity coefficient parameter ranking

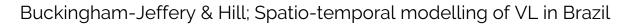
• Average VL disease prevalence was most sensitive to the probability of a newly introduced dog being infected.

Buckingham-Jeffery & Hill; Spatio-temporal modelling of VL in Brazil

Figure 6: Stochastic sensitivity coefficient parameter ranking

• Four parameters associated with sandflies were among the top six ranked parameters.

Buckingham-Jeffery & Hill; Spatio-temporal modelling of VL in Brazil


MANCHESTER

Conclusions and next steps

• Developed a novel individual-based, spatio-temporal mechanistic modelling framework for VL in dogs.

• Sensitivity analysis motivates future data collection efforts.

- Provides a platform to stimulate the formulation of innovative mathematical models into:
 - spatial spread of zoonotic VL infection in humans
 - intervention planning

Thank you, questions?

Acknowledgements

This work is in collaboration with Samik Datta, Erin Dilger, and Orin Courtenay, University of Warwick.

The University of Manchester

Email: e.buckingham-jeffery@manchester.ac.uk Webpage: ebucksjeff.github.io Twitter: @Ebucksjeff

Email: Edward.Hill@warwick.ac.uk Webpage: www.edmhill.com Twitter: @EdMHill