

Incorporating heterogeneity in farmer disease control behaviour into a livestock disease transmission model

Edward Hill Civic Health Innovation Labs & Institute of Population Health, University of Liverpool

EuFMD Open Session | OS24

Alcalá de Henares (Madrid, Spain), 29-31 October 2024

Interdisciplinary team

Ed Hill

Infectious disease modelling

Mike Tildesley

Veterinary epidemiology

Matt Keeling

Scientific software

Paul Brown

Behavioural psychology

Naomi Prosser Martin Green

Jasmeet Kaler

Eamonn Ferguson

ttps://edmhill.github.io/

Farmer-led Epidemic and Endemic Disease-management (FEED)

Biotechnology and Biological Sciences Research Council

Project motivation

- Control of infectious disease in livestock can be farmer-led or government-led.
- There is a knowledge gap on the different factors that drive farmer behaviour in response to an emerging disease.
- Mathematical models traditionally treat farmers as passive bystanders and omit variation in disease management behaviours.

Ed Hill

🔇 @EdMHill

https://edmhill.github.io/

Study aims

- 1. Elicit farmers vaccination decisions to an unfolding epidemic and link to their psychosocial and behavioural profiles (within Great Britain)
- 2. Refine mathematical disease models to capture psychosocial & behaviour change heterogeneities
- 3. Assess how psychosocial & behaviour change factors impact epidemiological outcomes given a fastspreading livestock disease

Incorporating heterogeneity in farmer disease control behaviour into a livestock disease transmission model **EM Hill**, NS Prosser, PE Brown, E Ferguson, MJ Green, J Kaler, MJ Keeling, MJ Tildesley. (2023) *Preventive Veterinary Medicine*. doi:10.1016/j.prevetmed.2023.106019

🕙 @EdMHill

Study aim 1: Elicit farmers vaccination decisions

1. Elicit farmers vaccination decisions to an unfolding epidemic and link to their psychosocial and behavioural profiles (within Great Britain)

Elicitation results – GUI simulation

Stage of epidemic	Time since previous stage (weeks)	Number of infected herds (in GB)	Distance to nearest infected herd (km)	Number of farmers vaccinating (/60)
1	2	0	>500*	8
2	2	2	322	16
3	1	10	322	5
4	1	40	161	14
5	1	100	161	1
6	1	150	48	10
7	1	450	16	3
8	1	600	5	1
*Epidemic confined to southern-central France				

Sixty farmers (39 beef & 21 dairy) participated.

Variability in when they would use preventative vaccination.

Elicitation results – farmer groupings

Using k-means clustering, four groups gave best fit when clustering by two most stable covariates (trust in Governmental judgements for disease control, high physical opportunity)

Farmer groups from k-means clustering conducted on the two most stable covariates.

Proportion of farmers in each group that vaccinated in different stages of the outbreak.

https://edmhill.github.io/

Study aim 2: Refine the livestock disease model

- 1. Elicit farmers vaccination decisions to an unfolding epidemic and link to their psychosocial and behavioural profiles (within Great Britain)
- 2. Refine mathematical disease models to capture psychosocial & behaviour change heterogeneities
- Data-driven spatial model framework with epidemiological and behavioural layers.
- 3. Assess how psychosocial & behaviour change factors impact epidemiological outcomes given a fast-spreading livestock disease

Modelling methods - Cattle data

- > Data from the Great Britain Cattle Tracing System (from 2020 ; approx. 60,000 holdings)
- > Cattle demography: Per holding, average cattle herd size
- > Cattle holding locations: Per holding, easting-northing co-ordinates.

🔇 @EdMHill

Ed Hill

Distribution of cattle herd sizes

Per region, number of holdings with cattle & cattle population

https://edmhill.github.io/

- > Epidemiological unit: Cattle holding (farm).
- Spatial model, based loosely on the dynamics of FMD.
 - Force of infection dependencies: Number of livestock, livestock type specific transmissibility and susceptibility, distance between premises.
 - Infection to infectiousness (latent period): 5 days
 - Infection to notification: 9 days
 - Infection to culled: 13 days

- > Epidemiological unit: Cattle holding (farm).
- Spatial model, based loosely on the dynamics of FMD.
 - Force of infection dependencies: Number of livestock, livestock type specific transmissibility and susceptibility, distance between premises.
 - Infection to infectiousness (latent period): 5 days
 - Infection to notification: 9 days
 - Infection to culled: 13 days

- > Epidemiological unit: Cattle holding (farm).
- Spatial model, based loosely on the dynamics of FMD.
 - Force of infection dependencies: Number of livestock, livestock type specific transmissibility and susceptibility, distance between premises.
 - Infection to infectiousness (latent period): 5 days
 - Infection to notification: 9 days
 - Infection to culled: 13 days

- > Epidemiological unit: Cattle holding (farm).
- Spatial model, based loosely on the dynamics of FMD.
 - Force of infection dependencies: Number of livestock, livestock type specific transmissibility and susceptibility, distance between premises.
 - Infection to infectiousness (latent period): 5 days
 - Infection to notification: 9 days
 - Infection to culled: 13 days

- > Epidemiological unit: Cattle holding (farm).
- Spatial model, based loosely on the dynamics of FMD.
 - Force of infection dependencies: Number of livestock, livestock type specific transmissibility and susceptibility, distance between premises.
 - Infection to infectiousness (latent period): 5 days
 - Infection to notification: 9 days
 - Infection to culled: 13 days

Modelling methods – Behavioural configurations

Uncooperative Only control is cattle being removed at holdings with confirmed infection. i.e. No holdings apply vaccination.

Homogeneous: Non-data informed

Each farmer has same risk threshold - will vaccinate when infection is within a given distance. Heterogeneous: Non-data informed

Even split across different groups.

Heterogeneous: Data informed

Parameterised using interview results

C @EdMHill

Study aim 3: Assess impact of behaviour assumptions

- 1. Elicit farmers vaccination decisions to an unfolding epidemic and link to their psychosocial and behavioural profiles (within Great Britain)
- 2. Refine mathematical disease models to capture psychosocial & behaviour change heterogeneities
- 3. Assess how psychosocial & behaviour change factors impact epidemiological outcomes given a fast-spreading livestock disease

Spatial stochastic simulations of a fast-spreading epidemic in Great Britain cattle holdings:

- Per behavioural configuration, ran 500 replicates per 89 seed region locations.
- Per simulation replicate, seeded infection seeded in randomly selected cluster of three premises.

Modelling results – Epidemiological metrics

Figure: For each behavioural configuration: **(a)** Distribution of percentage of holdings infected; **(b)** Percentage of simulations exceeding the stated final size.

Comparing homogeneity in farmer behaviour vs data-informed heterogeneity in farmer behaviour: Disconnect in outcomes

Ed Hill

🔇 @EdMHill

Modelling results - Role of seed infection region

Median percentage of holdings infected, dependent on region of outbreak emergence and behavioural configuration. Statistics computed from 500 replicates per scenario.

Study implications

Demonstrated a conjoined epidemiological and socio-behavioural workflow in action!

Encourage consideration of actions of individual farmers in policy frameworks for tackling future livestock disease outbreaks

Acknowledgements

Mike Tildesley, Matt Keeling, Paul Brown. University of Warwick, UK.

Naomi Prosser, Jasmeet Kaler, Martin Green, Eamonn Ferguson. University of Nottingham, UK.

Incorporating heterogeneity in farmer disease control behaviour into a livestock disease transmission model EM Hill, NS Prosser, PE Brown, E Ferguson, MJ Green, J Kaler, MJ Keeling, MJ Tildesley. (2023) Preventive Veterinary Medicine. doi:10.1016/j.prevetmed.2023.106019

Biotechnology and Biological Sciences Research Council

FEED project webpage: https://feed.warwick.ac.uk

Email:

Edward.Hill@liverpool.ac.uk.