

Modelling seasonal influenza in England: Approaches to capture immunity propagation Edward Hill¹

Joint work with: Stavros Petrou², Simon de Lusignan³, Ivelina Yonova³, Matt Keeling¹

¹ Zeeman Institute: SBIDER (Systems Biology & Infectious Disease Epidemiology Research), University of Warwick, UK

- ² Health Economics Research Centre, University of Oxford, UK
- ³ Royal College of General Practitioners & University of Surrey, UK

The broader project

<u>MEMVIE: Mathematical and Economic Modelling for</u> <u>Vaccination and Immunisation Evaluation</u>

Provide a complementary second opinion on the work presented to the Joint Committee of Vaccination and Immunisation (JCVI).

FUNDED BY

NIHR National Institute for Health Research

Pertussis (whooping cough)

Pneumococcal disease

CCS 2019

- Human papillomavirus (HPV)
- Seasonal influenza

Project webpage:

https://warwick.ac.uk/fac/cross_fac/zeeman_institute/zeeman_research/epidemiology/humans/memvie/

Seasonal influenza is a considerable burden on public health

Figure: Influenza confirmed hospital admissions in England, 2010 to 2017

Source: Reproduced from the Public Health England report "Surveillance of influenza and other respiratory viruses in the UK: Winter 2016 to 2017".

- Vaccination can offer some protection against infection.
 - Two influenza A subtypes: A(H1N1)pdm09, A(H3N2),
 - Two influenza B lineages: B/Victoria, B/Yamagata

Ed Hill 🔰@EdMHill

Use of modelling to inform policy

BROWSE PUBLISH ABOUT

CCS 2019

🔓 OPEN ACCESS 🖻 PEER-REVIEWED

RESEARCH ARTICLE

Assessing Optimal Target Populations for Influenza Vaccination Programmes: An Evidence Synthesis and Modelling Study

Marc Baguelin D, Stefan Flasche, Anton Camacho, Nikolaos Demiris, Elizabeth Miller, W. John Edmunds

Published: October 8, 2013 • https://doi.org/10.1371/journal.pmed.1001527

Prior models typically treat each influenza season and each strain circulating within that season independently.

4

Our study objectives

(1) Data amalgamation

• Gather relevant influenza vaccine and epidemiological data for England (post-2009 influenza pandemic).

(2) Mathematical model development

• SEIR-type seasonal influenza transmission model, incorporating multiple strains and immunity propagation.

(3) Parameter inference

- Calibrate model to data using Approximate Bayesian Computation.
- Quantify extent of immunity propagation.

Our study objectives

(1) Data amalgamation

• Gather relevant influenza vaccine and epidemiological data for England (post-2009 influenza pandemic).

(2) Mathematical model development

 SEIR-type seasonal influenza transmission model, incorporating multiple strains and immunity propagation.

(3) Parameter inference

Calibrate model to data using Approximate Bayesian Computation.

Quantify extent of immunity propagation.

Data: Vaccine efficacy & uptake

Efficacy & uptake data from Public Health England

Figure: Vaccine uptake in 2016/17 influenza season 80 65+vrs 70 Vaccine uptake (%) 00 05 07 08 09 09 09 09 09 09 09 09 <65yrs at risk All pregnant women 2016/17 season indicated by bold lines, 2015/16 season indicated by fainter 10 dashed lines 0 41 43 45 39 47 49 51 1 3 5 7 9 Week number

Source: PHE Weekly National Influenza Report (25 May 2017)

CCS 2019

7

Data: Influenza attributed GP visits

GP consultation rate for strain m in season $y = \dots$

Data: GP visits for ILI

GP consultation rate for strain m in season $y = \text{GP ILI consultation rate} \times \dots$

Week	Age	Chronic Disease	Population	Num. of patients with ILI
01/2018	1	1	68,437	10
01/2018	1	0	578,907	13
01/2018	2	1	89,396	17
01/2018	2	0	743,470	28
01/2018	3	1	28,957	25
01/2018	3	0	956,278	13

Data source:

Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) network: www.rcgp.org.uk/rsc

Data: Virological positivity

GP consultation rate for strain m in season y = GP ILI consultation rate $\times \dots$ Proportion of ILI samples influenza positive $\times \dots$

CCS 2019

10

Data: Virological positivity

Figure: Number of influenza positive samples and % positive (2017/18 influenza season).

Data source:

Figure reproduced from Public Health England weekly national influenza reports.

Ed Hill 🔰 🖉 @Ed MHill

Data: Circulating strain composition

GP consultation rate for strain m in season y = GP ILI consultation rate $\times \ldots$ Proportion of ILI samples influenza positive $\times \ldots$ Proportion of influenza viruses in circulation of strain type m

Data: Circulating strain composition

Figure: Virologically sampled influenza cases attributed to each strain.

Data source:

WHO FluNet (https://www.who.int/influenza/gisrs_laboratory/flunet/en/)

Ed Hill 🔰 @EdMHill

Data: Influenza attributed GP visits

Figure: Empirical, strain-stratified data for ILI GP consultations attributable to influenza per 100,000 population.

Ed Hill 🔰 @Ed MHill

14

Our study objectives

(1) Data amalgamation

• Gather relevant influenza vaccine and epidemiological data for England (post-2009 influenza pandemic).

(2) Mathematical model development

• SEIR-type seasonal influenza transmission model, incorporating multiple strains and immunity propagation.

(3) Parameter inference

Calibrate model to data using Approximate Bayesian Computation.

Quantify extent of immunity propagation.

Full model schematic

CCS 2019

16

Ed Hill 🔰 💓 @Ed MHill

Vaccination model

Assumed a 'leaky' vaccine; reducing the overall susceptibility of the given group receiving vaccination.

CCS 2019

Ed Hill 🔰 🖉 @EdMHill

Immunity propagation model

Ed Hill 🔰 🖉 @Ed MHill

18

Immunity propagation model

Figure: Interaction between exposure history and susceptibility.

		Strain susceptibility			
		A(H1N1)pdm09	A(H3N2)	B/Victoria	B/Yamagata
Exposure history (h)	Naïve	1	1	1	1
	A(H1N1)pdm09	а	1	1	1
	A(H3N2)	1	а	1	1
	B/Yamagata	1	1	a	b
	B/Victoria	1	1	b	a
	Vacc. (V)	C _{A(H1N1)}	С _{А(НЗN2)}	C_{B/Victoria}	C_{B/Yamagata}
	A(H1N1)pdm09 & V	min(<i>a, c_{A(H1N1)})</i>	С _{А(НЗN2)}	C_{B/Victoria}	C_{B/Yamagata}
	A(H3N2) & V	с _{А(Н1N1)}	min(<i>a</i> , c _{A(H3N2)})	C_{B/Victoria}	C_{B/Yamagata}
	B/Victoria & V	C _{A(H1N1)}	С _{А(НЗN2)}	min(<i>a</i> , c _{B/Victoria})	min(b, c _{B/Yamagata})
	B/Yamagata & V	с_{А(Н1N1)}	C _{A(H3N2)}	min(b, c _{B/Victoria})	min(<i>a, c</i> _{B/Yamagata})

> Vaccine immunity carried over: $c_m^y = 1 - \xi \alpha_m^{y-1}; \quad \xi \in (0, 1)$

Ed Hill **y**@EdMHill

19

Epidemiological model

Ed Hill 🔰 🖉 @Ed MHill

20

Epidemiological model

Figure: Vaccination and epidemiological model schematic.

Track incidence rate (per 100,000) of new strain m influenza infections in season y:

$$Z_m(y) = \left(\int_{y-1}^{y} \gamma_{1,m} (E_m^N + E_m^V) \, \mathrm{dt} \right) \times 100,000.$$

CCS 2019

21

Ed Hill 🔰 🖉 @EdMHill

Observation model

Estimated ascertainable influenza cases:

 $Z_m^+(y) = \epsilon_y Z_m(y).$

CCS 2019

22

Table: Overview of parameters in the model.

Description	Notation	Value
Fixed parameters		
Mortality rate (day ⁻¹)	B,D	$\frac{1}{81 \times 365}$
Rate of latency loss, influenza A subtypes (day^{-1})	$\gamma_{1,A}$	$\frac{1}{1.4}$
Rate of latency loss, influenza B lineages (day^{-1})	$\gamma_{1,B}$	$\frac{1}{0.6}$
Recovery rate (day^{-1})	γ_2	$\frac{1}{3.8}$
Time-varying parameters		
Vaccination rate at time t	u(t)	
Vaccine efficacy, season y strain m	$lpha_m^y$	
Inferred parameter description	Notation	Prior
Influenza virus transmissibility, strain m	β_m	$\mathcal{U}(0.2632, 0.7896)$
Modified susceptibility given natural infection in prior season	a	$\mathcal{U}(0,1)$
Modified susceptibility due to type B influenza cross-reactivity	b	$\mathcal{U}(0,1)$
Proportion of prior season vaccine efficacy carried over	ξ	$\mathcal{U}(0,1)$
Ascertainment probability in season y	ϵ_y	$\mathcal{U}(0,0.05)$

Our study objectives

(1) Data amalgamation

• Gather relevant influenza vaccine and epidemiological data for England (post-2009 influenza pandemic).

(2) Mathematical model development

• SEIR-type seasonal influenza transmission model, incorporating multiple strains and immunity propagation.

(3) Parameter inference

• Calibrate model to data using Approximate Bayesian Computation.

CCS 2019

Quantify extent of immunity propagation.

Parameter set summary statistics

CCS 2019

25

 $M_{m,y}$ the model estimate for strain *m* in season *y*.

Ed Hill 🔰@EdMHill

Data: Influenza attributed GP visits

Figure: Empirical, strain-stratified data for ILI GP consultations attributable to influenza per 100,000 population (influenza seasons 2012/13-2017/18.

Ed Hill 🔰@EdMHill

26

Parameter fits: Transmissibility

Figure A: Inferred posterior distributions for the transmissibility associated parameters.

Similar estimates for the two influenza A subtypes.

Exceed corresponding estimates for the two type B lineages.

27

Parameter fits: Ascertainment

28

Parameter fits: Immunity propagation

Figure C: Inferred posterior distributions for the immunity propagation associated parameters.

Observe modulation of susceptibility due to propagation of immunity arising from natural infection.

Ed Hill 🔰 🖉 @EdMHill

29

Parameter fits: Immunity propagation

Figure C: Inferred posterior distributions for the immunity propagation associated parameters.

> Minimal propagation of influenza B cross-reactive immunity.

30

Parameter fits: Immunity propagation

- Very little carry over of prior season vaccine efficacy.
- Corroborates reports vaccine-mediated immunity wanes rapidly.

Reference: Kissling E, Rondy M, study team IMM. Early 2016/17 vaccine effectiveness estimates against influenza A(H3N2): I-MOVE multicentre case control studies at primary care and hospital levels in Europe. *Eurosurveillance*. 2017;**22**(7):30464.

Goodness-of-fit verification

- Perform 1,000 independent simulations using parameter sets drawn from the ABC inference procedure.
- Generate variability in epidemic composition due to the posterior distribution for the underlying parameters.
- Compare projected flu attributed GP consultations (per 100,000) to the data.

Goodness-of-fit verification

Figure: Posterior predictive distributions for influenza positive GP consultations per 100,000 population.

33

Limitations & future work

- Include age structure
 - Age-specific vaccine uptake and efficacy
 - Heterogeneous social contact patterns

Figure: Representations in logarithmic scale of contact matrices by one-year age brackets for the United Kingdom.

Source: Reproduced from L. Fumanelli *et al.* Inferring the Structure of Social Contacts from Demographic Data in the Analysis of Infectious Diseases Spread. *PLOS Computational Biology* **8**(9): e1002673 (2012).

CCS 2019

34

Limitations & future work

- Include age structure
 - Age-specific vaccine uptake and efficacy
 - Heterogeneous social contact patterns
- Propagation of immunity limited to a single season
- Appraise cost-effectiveness of prospective vaccination programmes

Summary of advances

(1) Data amalgamation

Compiled influenza vaccine and epidemiological data subsequent to the 2009 influenza pandemic for England.

(2) Mathematical model development

Constructed a dynamic multi-strain SEIR-type transmission model for seasonal influenza, with immunity propagation mechanisms between seasons.

(3) Parameter inference

Propagation of seasonal influenza immunity from one season to the next is weaker if vaccine derived, compared to natural immunity from infection.

Acknowledgements

Matt Keeling (University of Warwick)

Stavros Petrou (University of Oxford)

Ivelina Yonova, Simon de Lusignan (RCGP & University of Surrey)

This work is independent research funded by the National Institute for Health Research (NIHR) (Policy Research Programme, Infectious Disease Dynamic Modelling in Health Protection, 027/0089).

The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care."

FUNDED BY

NIHR National Institute for Health Research

Email: Edward.Hill@warwick.ac.uk **Webpage:** https://edmhill.github.io

