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Propagation of seasonal influenza immunity

IS stronger if derived from natural infection.
4. Transmission

Seasonal influenza-related respiratory illnesses cause an estimated annual death toll » Vaccination model: ‘Leaky’ vaccine

of 291,000-646,000 people [1]. Influenza vaccination can offer some protection against * Epidemiological model: SEIR-type deterministic, ODEs (Fig. 3).

infection for the individual, while contributing to reduced risk of ongoing transmission — Track incidence rate (per 100,000) of new strain m influenza infections in season y:
via establishment of herd immunity [2]. Transmission models connected to data, when v

interfaced with health economic evaluations, are a key tool to inform national Zin(y) = (y/l Tim(E + Ep) dt) 100,000

influenza vaccine policy [3]. However, prior modelling studies have typically treated Fig. 3: Transmission model schematic (for a single strain).
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i. Develop a mathematical model incorporating a mechanism to link prior season lu lu FecEaReT FIEEESS

@ch season and each strain circulating within that season independently.

Study objectives:

epidemiological outcomes to immunity at the beginning of the following season; v
1,m

Transmission

ii. Quantify contribution of differing sources of immunity propagation between years -—--P ——==>
on seasonal influenza transmission dynamics in England, 2012/13 to 2017/18.

Vaccinated
2. Model overview \Observation model - Estimate ascertainable influenza cases: 77 (y) = ¢,Z,.(v).

* Non-age, multi-strain model, capturing the four strains targeted by the quadrivalent
influenza vaccine: A(H1IN1)pdm09, A(H3N2), B/Victoria, B/Yamagata.

5. Results: Parameter inference

. . . o _ * Invoked an adaptive-population Monte Carlo ABC algorithm [4]. Prior season influenza
Fig. 1: Model schematic. Process A (circled capitalised letters), propagation of . - ’ , . had little & toni "
immunity; process B, modulation of current influenza season virus susceptibility; Cross-reactivity and carry over vaccine etticacy had littie impact on immunity.
process C, estimation of influenza case load; process D, ascertainment of cases. Fig. 4: Immunity propagation parameter posterior distributions, from 10,000
parameter sets. Vertical red lines denote median values.
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7. Outlook

 Augment model with age structure.

* Propagated vaccine immunity related linearly to prior season vaccine efficacy: * Couple transmission model with economic evaluation frameworks.
Yy _ 1 _ eyl . . . . .
< cr =1—8ap, 5 £€(0,1) N Appraise cost-effectiveness of prospective seasonal influenza vaccine programmes.
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