

Modelling livestock infectious disease control policy under differing social perspectives on vaccination behaviour

Ed Hill, Naomi Prosser, Eamonn Ferguson, Jasmeet Kaler, Martin Green, Matt Keeling, Mike Tildesley.

Zeeman Institute: Systems Biology & Infectious Disease Epidemiology Research (SBIDER), University of Warwick, UK.

Farmer-led Epidemic and Endemic Disease-management (FEED)

FEED project webpage: https://feed.warwick.ac.uk

Project motivation

Gather insight on the different factors that drive farmer behaviour in the face of an emerging disease.

Study aim

In response to a livestock disease outbreak, how may individual and population perspectives towards an intervention (e.g. vaccination) be different?

Study approach

Simulated outbreaks of an FMD-like pathogen on representative livestock systems in the English counties of Cumbria and Devon.

EuFMD OS202

Ed Hill 🔰 🥑 @EdMHill

The data

Farm livestock populations (for Cumbria and Devon):

- Cattle: Average 2020 herd sizes (from Cattle Tracing System)
- *Sheep*: December 2020 estimates (from sheep inventory)

Figure: (Left) Locator map for Cumbria and Devon in England; **(Right)** Amount of premises with cattle only, sheep only or both.

Epidemiological unit: Premises.

Spatial model, based loosely on the dynamics of FMD.

- Force of infection dependencies: Number of livestock, livestock type specific transmissibility and susceptibility, distance between premises.
- Infection to infectiousness (latent period): 5 days
- Infection to notification: 9 days
- Infection to culled: 13 days

EuFMD OS2022

Ed Hill 🔰 @EdMHill

> Epidemiological unit: Premises.

Spatial model, based loosely on the dynamics of FMD.

- **Force of infection dependencies:** Number of livestock, livestock type specific transmissibility and susceptibility, distance between premises.
- Infection to infectiousness (latent period): 5 days
- Infection to notification: 9 days
- Infection to culled: 13 days

EuFMD OS2022

Ed Hill 🔰 🥑 @EdMHill

> Epidemiological unit: Premises.

Spatial model, based loosely on the dynamics of FMD.

- Force of infection dependencies: Number of livestock, livestock type specific transmissibility and susceptibility, distance between premises.
- Infection to infectiousness (latent period): 5 days
- Infection to notification: 9 days
- Infection to culled: 13 days

EuFMD OS2022

Ed Hill 🔰 @EdMHill

Epidemiological unit: Premises.

> Spatial model, based loosely on the dynamics of FMD.

- Force of infection dependencies: Number of livestock, livestock type specific transmissibility and susceptibility, distance between premises.
- Infection to infectiousness (latent period): 5 days
- Infection to notification: 9 days
- Infection to culled: 13 days

EuFMD OS2022

Ed Hill 🔰 🥑 @EdMHill

> Epidemiological unit: Premises.

> Spatial model, based loosely on the dynamics of FMD.

- Force of infection dependencies: Number of livestock, livestock type specific transmissibility and susceptibility, distance between premises.
- Infection to infectiousness (latent period): 5 days
- Infection to notification: 9 days
- Infection to culled: 13 days

EuFMD OS2022

Ed Hill 🔰 @EdMHill

Intervention assumptions

- > Farmers split into three groups:
 - 'Precautionary': X% of farmers who had vaccinated livestock on their premises before the outbreak began.
 - **'Reactionary':** *Y*% of farmers who vaccinated livestock on their premises if there was notification of infection within distance *d*.
 - **'Non-vaccinators':** *Z*% of farmers who did not apply vaccination in any circumstances.
- > Time for vaccine to induce immune response: 4-6 days.
- > Vaccine effectiveness: Assumed 100% (fully effective).

> Aim: Find the optimal distance threshold for 'reactionary' vaccinators

- Assessed notified infection within 0km to 10km, with 1km increments.

10

> Aim: Find the optimal distance threshold for 'reactionary' vaccinators

- Assessed notified infection within 0km to 10km, with 1km increments.

VACCINATION

EuFMD OS2022

Ed Hill 🛛 🔰 @EdMHill

> Aim: Find the optimal distance threshold for 'reactionary' vaccinators

- Assessed notified infection within 0km to 10km, with 1km increments.

> Aim: Find the optimal distance threshold for 'reactionary' vaccinators

- Assessed notified infection within 0km to 10km, with 1km increments.

RELATIVE COST OF VACCINATION

Intervention group scenarios

Assessed the role of behaviour on epidemic outcomes by splitting the population of farmers into the three vaccination groups: 'precautionary', 'reactionary', 'non-vaccinators'.

Ed Hill

Had 231 different vaccine stance group compositions & used ternary plots to visualise the results

Example outputs

Figure: Strategy that minimised overall cost in Cumbria. Column by relative cost of vaccination: **(left)** 0.2; **(right)** 0.8.

@EdMHill

Ed Hill

- For low relative cost of vaccination and majority
 `precautionary', an individual perspective gave a wider spatial extent of reactive response.
- For relative cost of vaccination > 0.6, population standpoint had a wider notification zone to trigger reactive vaccination.

15

Implications

Help offer insights on the nature of control measures that is optimal both from the industry and the individual farmer-level perspectives.

Acknowledgements

Mike Tildesley, Matt Keeling

Zeeman Institute: Systems Biology & Infectious Disease Epidemiology Research (SBIDER), University of Warwick, UK.

Naomi Prosser, Jasmeet Kaler, Martin Green,

School of Veterinary Medicine and Science, University of Nottingham, UK.

Eamonn Ferguson

School of Psychology, University of Nottingham, UK.

Animal and Plant Health Agency (APHA)

	Modelling livestock infectious disease control policy under differing social perspectives on vaccination behaviour EM Hill, NS Prosser, E Ferguson, J Kaler, MJ Green, MJ Keeling MJ Tildesley. (2022) <i>PLOS Computational Biology</i> 18 (7): e1010235. doi:10.1371/journal.pcbi.1010235		
FEED project webpage: https://feed.warwick.ac.uk	Personal webpage: https://edmhill.github.io	KK	Biotechnology and Biological Sciences Research Council

EuFMD OS2022

Email: Edward.Hill@warwick.ac.uk

SBIDER Podcast Hub

Listen to SBIDER Careers:

What are the paths to a research career in epidemiology and infectious disease modelling? What are the day-to-day tasks?

Welcome to SBIDER Careers! In our podcast, we seek insights on these questions and more.

EuFMD OS2022

Ed Hill 🔰 🥑 @EdMHill