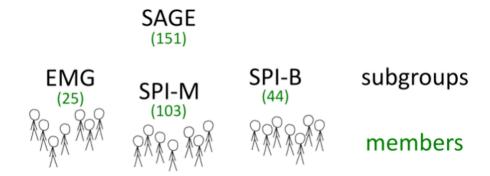
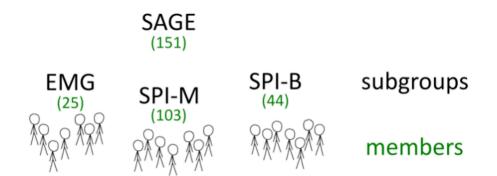


Modelling the epidemiological implications for SARS-CoV-2 of Christmas household bubbles in England in December 2020


Ed Hill

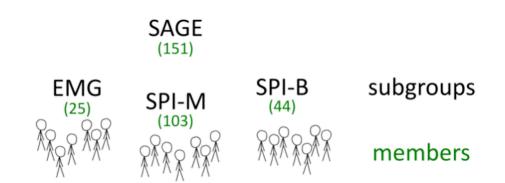
Zeeman Institute: Systems Biology & Infectious Disease Epidemiology Research (SBIDER), University of Warwick

Structure of the **COVID** science to policy path



List of participants of SAGE and related sub-groups:

Ed Hill

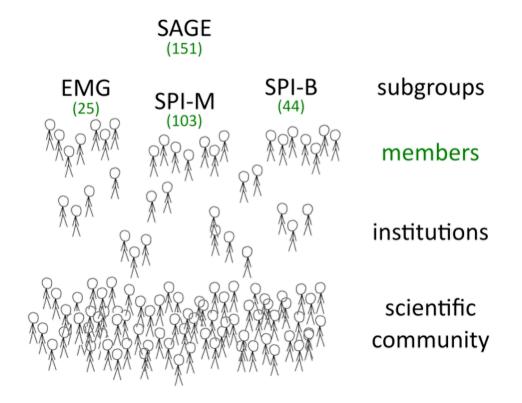

How SPI-M-O worked

SPI-M-O provided:

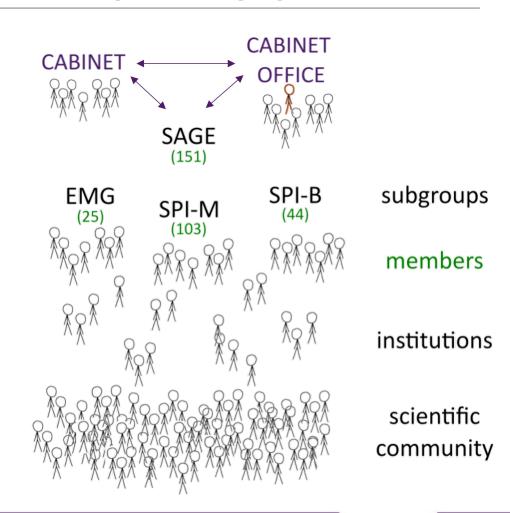
- Multiple independent groups
- Rapid responses to commissions and rapid peer review
- R values / Medium term projections / Reasonable worst-case scenarios
- Consensus statements
- A route for non-commissioned insights

How SPI-M-O worked

Supported by:


- An incredible secretariat
- > Data provision through UKHSA (PHE) and DSTL

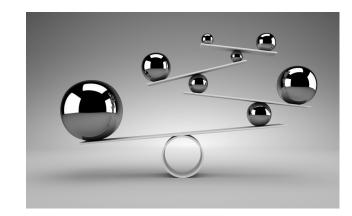
Structure of the COVID science to policy path


A massive team effort!

Structure of the **COVID** science to policy path

Feeding into policy

- Chief Medical Officer (Chris Whitty) & Chief Scientific Advisor (Patrick Vallance)
- > Secretariat
- Observers
 - UKHSA (also some participants)
 - Cabinet office
 - Treasury
 - No. 10
 - **Devolved administrations**



Potential tensions

There are inherent tensions in the system to be balanced:

- Short deadlines vs careful science
- Privacy concerns vs data requirements
- Open science vs information control
- Rapid communication vs clarity and accuracy

Modelling the epidemiological implications for SARS-CoV-2 of Christmas household bubbles in England

EM Hill. (2023)

Journal of Theoretical Biology. **557**: 11131.

doi: 10.1016/j.jtbi.2022.111331

Guidance

Making a Christmas bubble with friends and family

How may short-term changes to household bubbles influence infectious disease dynamics?

Methods

1. Household model

2. Epidemiological model

3. Testing and isolation

4. Christmas bubble scenarios

5. Simulation overview

Methods: (1) Household model

- > Considered a population containing 100,000 households.
- ➤ Approximate overall population of **310,000**, with a three-class age structure: 0–19 yrs, 20–64 yrs, 65+ yrs.
- ➤ Household sizes and the proportion of households with a given age composition from 2011 census data for England and Wales.

CT0820_2011 Census - household type, household size and age of usual residents (people) - England and Wales

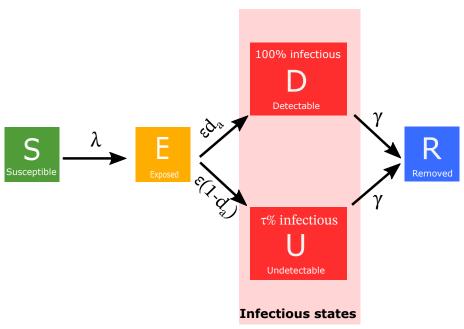


Table 1

Description of epidemiological parameters. The stated distributions are as reported in the cited sources, with additional context provided in the associated subsections of the main text.

Description	Distribution	Source
Incubation period	Erlang(6, 0.88)	Lauer et al. (2020)
Infectiousness profile	Infectivity profile over 14 days: [0.0369, 0.0491, 0.0835, 0.1190, 0.1439, 0.1497, 0.1354, 0.1076, 0.0757, 0.0476, 0.0269, 0.0138, 0.0064, 0.0044]	He et al. (2020) and Ashcroft et al. (2020)
Proportion of cases asymptomatic (0–19 yrs) Proportion of cases asymptomatic (20+yrs) Relative infectiousness of an asymptomatic Relative susceptibility of 0–19 yrs age class	Uniform(0.20, 0.35) Uniform(0.05, 0.20) Uniform(0.30, 0.70) Uniform(0.40, 0.60)	Buitrago-Garcia et al. (2020) Buitrago-Garcia et al. (2020) Buitrago-Garcia et al. (2020) and McEvoy et al. (2020) Davies et al. (2020a)

For an infectious individual *j* on day *t* of their infectious state, the probability of transmission to each susceptible contact *k* in household bubble *h*:

$$p_{j,k,h}(t) = r_h a_j s_k i_j(t)$$

> Sampled household attack rate in household h

Household attack rates

Size 2: Normal(0.48,0.06) Size 3: Normal(0.40,0.06)

Size >5: Normal(0.33,0.05)

- > Relative infectiousness of individual *j*
- ➤ Relative susceptibility of individual *k*
- ➤ Value of the infectiousness temporal profile on day t for individual j

For an infectious individual *j* on day *t* of their infectious state, the probability of transmission to each susceptible contact *k* in household bubble *h*:

$$p_{j,k,h}(t) = r_h a_j s_k i_j(t)$$

> Sampled household attack rate in household h

Household attack rates	Size 2: Normal(0.48,0.06)	Bernal et al. (2022)	
	Size 3: Normal(0.40,0.06)		
	Size 4: Normal(0.33,0.05)		
	Size \geq 5: Normal(0.22,0.05)		

- > Relative infectiousness of individual j
- ➤ Relative susceptibility of individual *k*
- Value of the infectiousness temporal profile on day t for individual j

For an infectious individual *j* on day *t* of their infectious state, the probability of transmission to each susceptible contact *k* in household bubble *h*:

$$p_{j,k,h}(t) = r_h a_j s_k i_j(t)$$

> Sampled household attack rate in household h

Household attack rates

Size 2: Normal(0.48,0.06) Size 3: Normal(0.40,0.06) Size 4: Normal(0.33,0.05) Bernal et al. (2022)

- > Relative infectiousness of individual *j*
- \triangleright Relative susceptibility of individual k
- ➤ Value of the infectiousness temporal profile on day t for individual j

For an infectious individual *j* on day *t* of their infectious state, the probability of transmission to each susceptible contact *k* in household bubble *h*:

$$p_{j,k,h}(t) = r_h a_j s_k i_j(t)$$

> Sampled household attack rate in household h

Household attack rates

Size 2: Normal(0.48,0.06)

Size 3: Normal(0.40,0.06)

Size 4: Normal(0.23,0.05)

Size \geq 5: Normal(0.22,0.05)

- > Relative infectiousness of individual j
- ➤ Relative susceptibility of individual *k*
- ➤ Value of the infectiousness temporal profile on day t for individual j

For an infectious individual *j* on day *t* of their infectious state, the probability of transmission to each susceptible contact *k* in household bubble *h*:

$$p_{j,k,h}(t) = r_h a_j s_k i_j(t)$$

> Sampled household attack rate in household h

Household attack rates Size 2: Normal(0.48,0.06)
Size 3: Normal(0.40,0.06)
Size 4: Normal(0.33,0.05)

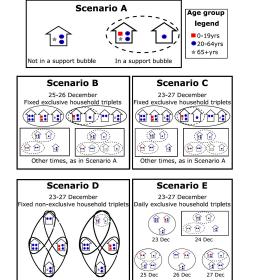
- > Relative infectiousness of individual j
- Relative susceptibility of individual k
- Value of the infectiousness temporal profile on day t for individual j

> Initial conditions: Intentionally had no symptomatically infected individuals at the start of the simulated time horizon, meaning no households began in isolation.

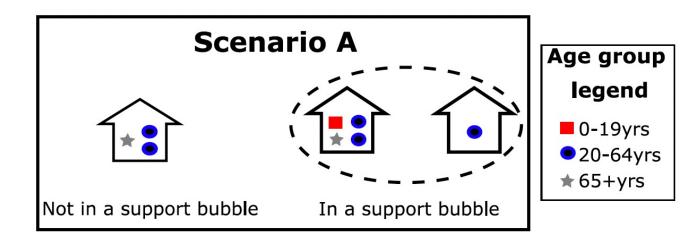
Table 3 Percentage of each age group initialised in each infection status.

	Age (years)		
	0–19	20–64	65+
Susceptible	73%	74%	84.5%
Latent infected	1%	0.5%	0.25%
Asymptomatic infected	0.3%	0.1%	0.05%
Presymptomatic infected	0.7%	0.4%	0.2%
Recovered	25%	25%	15%

Methods: (3) Testing and isolation


Table 2
Description of testing and isolation related parameters.

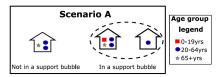
Description	Value	Source
Adherence	70% (30% in adherence sensitivity analysis)	Office for National Statistics (2020a)
Test specificity	100%	Office for National Statistics (2020b)
Test sensitivity	87%	Holborow et al. (2020)
Duration of self-isolation if symptomatic	10 days	UK government guidance in November 2020 (Public Health
		England, 2020b)
Household isolation period	14 days	UK government guidance in November 2020 (Public Health
		England, 2020b)
Duration of isolation if contact traced	14 days (beginning from the day the index	UK government guidance in November 2020 (Department of Health
	case first displays symptoms)	and Social Care, 2020)

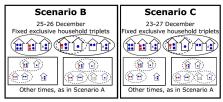

- > Assumed all individuals within a household (or extended household/support bubble) had the same adherence status.
- Those that adhered would both follow **isolation guidance** and engage with **test and trace**.
- ➤ Assumed an adherent individual household member took a **PCR test** if they displayed symptoms, with **same day** return of result.

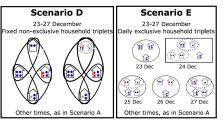
Methods: (4) Bubbling scenarios

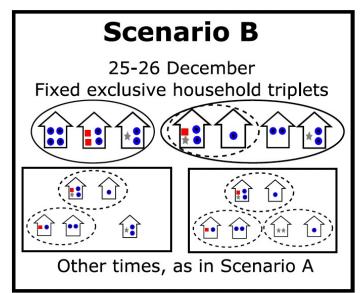
Figure: Illustrative examples of the five bubbling scenarios.

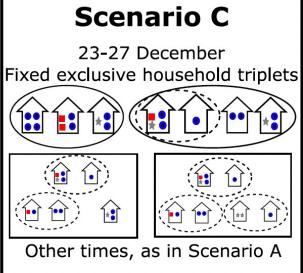
Other times, as in Scenario A

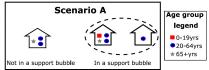


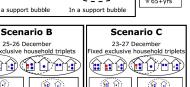

➤ Sampled the propensity to form a support bubble from a Uniform(0.5,0.75) distribution.

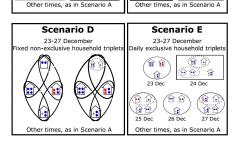

Other times, as in Scenario A

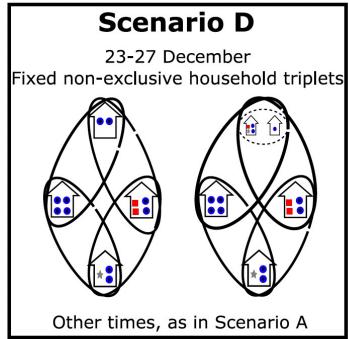

Methods: (4) Bubbling scenarios

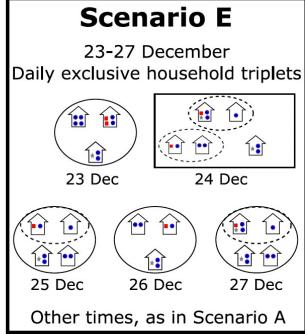

Figure: Illustrative examples of the five bubbling scenarios.

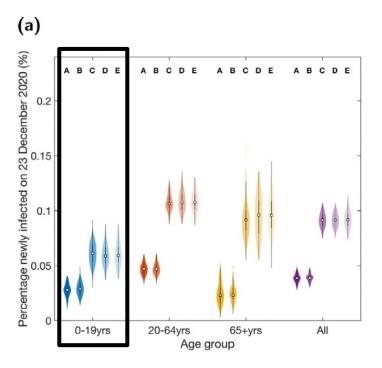


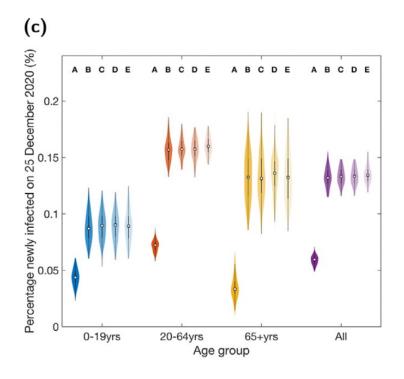





Methods: (4) Bubbling scenarios

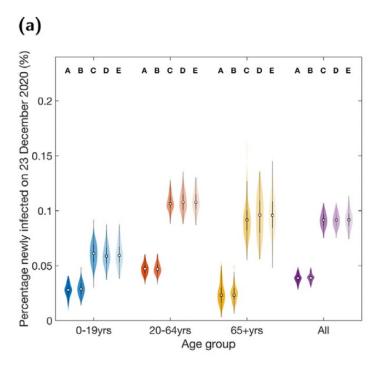

Figure: Illustrative examples of the five bubbling scenarios.

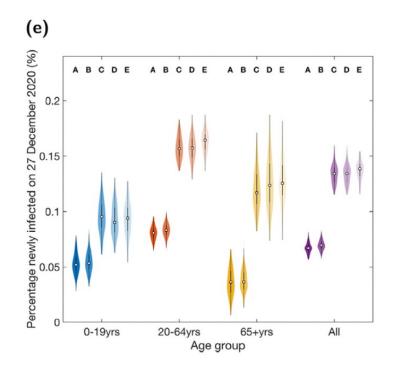



Methods: (5) Simulation overview

- > Study evaluated **five** different household bubble scenarios.
- ➤ **Bubbling period:** 23-27 December 2020
- > Simulated time horizon: 23 December 2020 06 January 2021
- > Performed 100 model simulations for each scenario
- > Assessment comprised incidence and cumulative infection metrics

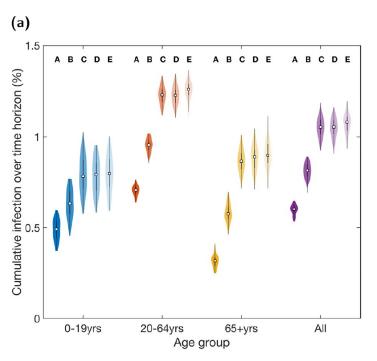
Inspection of daily incidence

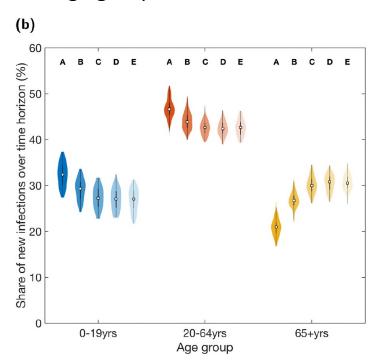

Figure: Distributions for the daily incidence under each Christmas bubble scenario. **(a)** 23 December 2020; **(c)** 25 December 2020.



Inspection of daily incidence

Figure: Distributions for the daily incidence under each Christmas bubble scenario. **(a)** 23 December 2020; **(e)** 27 December 2020.





➤ Appreciable decline in daily incidence for a **shorter duration** and/or **smaller group** gatherings (Scenarios A & B).

Heightened risk of infection with age

Figure: Cumulative infection distribution for the entire 15-day time horizon (23 Dec 2020 – 06 Jan 2021): **(a)** Percentage of each age group infected; **(b)** Percentage share of new infections over the time horizon attributed to each age group.

➤ Increase in infection from greater amounts of social mixing disproportionately impacted the eldest.

Limitations

- Assumptions regarding **bubble formation** were a **simplified representation** of the real-world social system.
- ➤ Whilst the model considered infection resulting from person-toperson interactions due to household mixing, it **did not consider** transmission arising from **other settings**.
- Findings may be **sensitive** to alternative epidemiological model structures and intervention assumptions, particularly **adherence** to isolation and test-and-trace measures.

Implications

Shows potential use of stochastic individual-based models representing synthetic population of households.

When needing to assess the epidemiological impact of extending contacts beyond the immediate household, provides a methodology that is swift to develop & deploy.

Acknowledgements

➤ Zeeman Institute: Systems Biology & Infectious Disease Epidemiology Research (SBIDER)

> JUNIPER consortium

https://maths.org/juniper/

@JuniperConsort1

Modelling the epidemiological implications for SARS-CoV-2 of Christmas household bubbles in England

EM Hill. (2023)

Journal of Theoretical Biology. **557**: 11131.

doi: 10.1016/j.jtbi.2022.111331

SBIDER COVID-19 webpage:

https://tinyurl.com/warwickCOVID19

Personal webpage:

https://edmhill.github.io

Email:

Edward.Hill@warwick.ac.uk

SBIDER Podcast Hub

Welcome to SBIDER Presents!

In our podcast, we interview @WarwickSBIDER researchers about their work in the biological & medical sciences.

What are the paths to a research career in epidemiology and infectious disease modelling? What are the day-to-day tasks?

Welcome to SBIDER Careers!

In our podcast, we seek insights on these questions and more.